273 research outputs found

    Solution to papal chemistry challenge

    Full text link

    Tidal range energy resource assessment of the Gulf of California, Mexico

    Get PDF
    There is growing interest in harnessing renewable energy resources in Latin America. Converting the energy of the tides into electricity has the distinct advantage of being predictable, yet the tidal range resource of Latin America is largely unquantified. The northern part of the Gulf of California (GC) in Mexico has a relatively large mean tidal range (4m–5m), and so could be a potential site for tidal range energy exploitation. A detailed quantification of the theoretical tidal range energy resource was performed using tidal level predictions from a depth-averaged barotropic hydrodynamic model. In addition, a 0-D operation modelling approach was applied to determine the power that can be technically extracted at four key sites. The results show that the annual energy yield ranges from 20 to 50 kWh/m2, while the maximum values are between 45 and 50 kWh/m2 in the vicinity of the Gulf of Santa Clara. Within the region, the Gulf of Santa Clara is one of the most promising, delivering a technical annual energy output of 125 GWh (ebb-only generation), 159 GWh (two-way) and 174 GWh (two-way with pumping) within an impoundment area of 10 km2. This equates to 50%, 40% and 33% of the absolute energy conversion relative to a much-studied reference site (Swansea Bay, UK) that has been under consideration as the world’s first tidal lagoon power plant. This study provides the basis for more detailed analysis of the GC to guide selection of suitable sites for tidal range energy exploitation in the region

    How to name new chemical elements (IUPAC Recommendations 2016)

    Get PDF
    A procedure is proposed to name new chemical elements. After the discovery of a new element is established by the joint IUPAC-IUPAP Working Group, the discoverers are invited to propose a name and a symbol to the IUPAC Inorganic Chemistry Division. Elements can be named after a mythological concept, a mineral, a place or country, a property or a scientist. After examination and acceptance by the Inorganic Chemistry Division, the proposal follows the accepted IUPAC procedure and is then ratified by the Council of IUPAC. This document is a slightly amended version of the 2002 IUPAC Recommendations; the most important change is that the names of all new elements should have an ending that reflects and maintains historical and chemical consistency. This would be in general "-ium" for elements belonging to groups 1-16, i.e. including the f-block elements, "-ine" for elements of group 17 and "-on" for elements of group 18.Metals in Catalysis, Biomimetics & Inorganic Material

    Papal chemistry challenge

    Full text link

    Lanthanides in granulometric fractions of Mediterranean soils. Can they be used as fingerprints of provenance?

    Get PDF
    Highlights Are lanthanides from fine sand and clay genetically related to the geological materials? Lanthanide concentrations of fine sand and clay fit chronofunctions Pearson's r of lanthanide couples decreases when separation increases in the periodic table Free forms of clay are scavengers of lanthanides and concentrate HREE and ceriumSample preparation and chemical analysis were conducted by Emma Humphreys-Williams and Stanislav Strekopytov (Imaging and Analysis Centre, Natural History Museum, London, UK). This work was supported by a grant from Ministerio de Economía, Industria y Competitividad de España (‘Tipologías de Suelos Mediterráneos versus Cuarzo. En la frontera del conocimiento edafogenético’; Ref. CGL2016-80308-P). The authors thank Professor Margaret A. Oliver, an anonymous editor and two anonymous reviewers for helpful comments and suggestions that improved the final manuscript. We also thank Robert Abrahams (Bsc) for revising the English language.There is geochemical interest in the lanthanides because they behave like a group that is closely related to the parent materials during surface processes, although they also undergo fractionation as a result of supergene dynamics. We analysed lanthanide concentrations (ICPms) in the granulometric fractions fine sand, clay and free forms of clay (FFclay‐CDB and FFclay‐Ox: extracted with citrate‐dithionite‐sodium bicarbonate and with ammonium oxalate, respectively) from a soil chronosequence of Mediterranean soils. There was a relative enrichment of heavy rare earth elements (HREE) in the clay fraction and its free forms with respect to fine sand. The clay free forms behaved as scavengers of lanthanides, and oxidative scavenging of cerium (Ce) in FFclay‐CDB was also detected. Lanthanide concentrations (lanthanum to gadolinium in fine sand; terbium to lutetium in clay) varied with soil age, and chronofunctions were established. There was a strong positive collinearity between most of the lanthanide concentrations. Furthermore, the value of the correlation index (Pearson's r ) of the concentrations between couples of lanthanides (r CLC) decreased significantly with increasing separation between the elements in the periodic table; this has never been described in soils. Several geochemical properties and indices in the fine sand and clay soil fractions and in the geological materials of the Guadalquivir catchment showed, on the one hand, a genetic relation between them all, enabling the lanthanides to be used as fingerprints of provenance; on the other hand, fractionation between fine sand and clay showed these are actively involved in soil lanthanide dynamics.Secretaría de Estado de Investigación, Desarrollo e Innovación. Grant Number: CGL2016‐80308‐

    Body height affects the strength of immune response in young men, but not young women

    Get PDF
    Body height and other body attributes of humans may be associated with a diverse range of social outcomes such as attractiveness to potential mates. Despite evidence that each parameter plays a role in mate choice, we have little understanding of the relative role of each, and relationships between indices of physical appearance and general health. In this study we tested relationships between immune function and body height of young men and women. In men, we report a non-linear relationship between antibody response to a hepatitis-B vaccine and body height, with a positive relationship up to a height of 185 cm, but an inverse relationship in taller men. We did not find any significant relationship between body height and immune function in women. Our results demonstrate the potential of vaccination research to reveal costly traits that govern evolution of mate choice in humans and the importance of trade-offs among these traits

    Standard atomic weights of the elements 2021 (IUPAC Technical Report)

    Get PDF
    Following the reviews of atomic-weight determinations and other cognate data in 2015, 2017, 2019 and 2021, the IUPAC (International Union of Pure and Applied Chemistry) Commission on Isotopic Abundances and Atomic Weights (CIAAW) reports changes of standard atomic weights. The symbol A r°(E) was selected for standard atomic weight of an element to distinguish it from the atomic weight of an element E in a specific substance P, designated A r(E, P). The CIAAW has changed the values of the standard atomic weights of five elements based on recent determinations of terrestrial isotopic abundances: Ar (argon): from 39.948 ± 0.001 to [39.792, 39.963] Hf (hafnium): from 178.49 ± 0.02 to 178.486 ± 0.006 Ir (iridium): from 192.217 ± 0.003 to 192.217 ± 0.002 Pb (lead): from 207.2 ± 0.1 to [206.14, 207.94] Yb (ytterbium): from 173.054 ± 0.005 to 173.045 ± 0.010 The standard atomic weight of argon and lead have changed to an interval to reflect that the natural variation in isotopic composition exceeds the measurement uncertainty of A r(Ar) and A r(Pb) in a specific substance. The standard atomic weights and/or the uncertainties of fourteen elements have been changed based on the Atomic Mass Evaluations 2016 and 2020 accomplished under the auspices of the International Union of Pure and Applied Physics (IUPAP). A r° of Ho, Tb, Tm and Y were changed in 2017 and again updated in 2021: Al (aluminium), 2017: from 26.981 5385 ± 0.000 0007 to 26.981 5384 ± 0.000 0003 Au (gold), 2017: from 196.966 569 ± 0.000 005 to 196.966 570 ± 0.000 004 Co (cobalt), 2017: from 58.933 194 ± 0.000 004 to 58.933 194 ± 0.000 003 F (fluorine), 2021: from 18.998 403 163 ± 0.000 000 006 to 18.998 403 162 ± 0.000 000 005 (Ho (holmium), 2017: from 164.930 33 ± 0.000 02 to 164.930 328 ± 0.000 007) Ho (holmium), 2021: from 164.930 328 ± 0.000 007 to 164.930 329 ± 0.000 005 Mn (manganese), 2017: from 54.938 044 ± 0.000 003 to 54.938 043 ± 0.000 002 Nb (niobium), 2017: from 92.906 37 ± 0.000 02 to 92.906 37 ± 0.000 01 Pa (protactinium), 2017: from 231.035 88 ± 0.000 02 to 231.035 88 ± 0.000 01 Pr (praseodymium), 2017: from 140.907 66 ± 0.000 02 to 140.907 66 ± 0.000 01 Rh (rhodium), 2017: from 102.905 50 ± 0.000 02 to 102.905 49 ± 0.000 02 Sc (scandium), 2021: from 44.955 908 ± 0.000 005 to 44.955 907 ± 0.000 004 (Tb (terbium), 2017: from 158.925 35 ± 0.000 02 to 158.925 354 ± 0.000 008) Tb (terbium), 2021: from 158.925 354 ± 0.000 008 to 158.925 354 ± 0.000 007 (Tm (thulium), 2017: from 168.934 22 ± 0.000 02 to 168.934 218 ± 0.000 006) Tm (thulium), 2021: from 168.934 218 ± 0.000 006 to 168.934 219 ± 0.000 005 (Y (yttrium), 2017: from 88.905 84 ± 0.000 02 to 88.905 84 ± 0.000 01) Y (yttrium), 2021: from 88.905 84 ± 0.000 01 to 88.905 838 ± 0.00
    corecore